
Sun Microsystems

Solaris UNIX

Student User Manual
Release 2.02 Spring 2006
Erh-Wen Hu & Marvin Kiss

Table of Contents

I. Introduction .. 2

II. Downloading and Installing WS_FTP LE and PuTTY ... 3

III. Using PuTTY to log onto the UNIX server
 1. Launching PuTTY .. 4

 2. Entering connection information ... 4

 3. Entering UNIX login information ... 5

 4. Changing your password ... 6

IV. A Single-file C++ Project
 1. Launching the pico text editor ... 7

 2. Entering the C++ source program ... 7

 3. Saving the source program .. 8

 4. Finding where you are with the pwd command ... 8

 5. Displaying contents of working directory with the ls command ... 9

 6. Creating a new folder with the mkdir command ... 10

 7. Moving between different directories with the cd command .. 10

 8. Compiling and linking a C++ program with the GNU C++ compiler ... 11

 9. Executing the a.out load module ... 12

 10. Retrieving and editing an existing file .. 12

 11. Printing the source program ... 13

 12. Printing the output result .. 13

 13. Logging out of the UNIX ... 13

V. A Multiple-file C++ Project
 1. Creating a folder to store all files belonging to the project ... 14

 2. Entering source files .. 14

 3. Compiling and linking multiple files ... 16

 4. Executing the multiple-file project .. 16

 5. Printing the source code and output result ... 17

 6. Retrieving and editing an existing multiple-file project .. 17

 7. Compiling source files separately ... 17

Appendix I: Frequently Used UNIX Commands ... 18

Appendix II: Frequently Used UNIX Shell Command-Line Key Strokes 22

Appendix III: Using WS_FTP LE……………………………………………………………..23

 Please forward your comments/suggestions to hue@wpunj.edu or kissm15@verizon.net.

mailto:hue@wpunj.edu
mailto:kissm15@verizon.net

 2

I. Introduction

This manual is primarily written for the beginning students in CS240 who are unfamiliar

with the UNIX operating system. The main objective is to enable students to enter, compile,

execute, and print their C/C++ software projects in the UNIX environment as quickly as possible.

To this end, the same two simple programs used in our MS Visual C/C++ 6.0 manual -- the

Hello World single-file program and the Time multiple-file project -- are used here for

demonstration. A subset of frequently used UNIX commands and utilities especially those that

are used for file management is also introduced. Because of its relative ease of use, the menu-

driven pico editor is used for the demonstration instead of the more popular vi and emacs editors

used in the industry. The vi and/or emacs can be learned quickly as soon as students become

acquainted with the UNIX environment.

In order to access our powerful UNIX from a remote location such as from your home, it

is strongly recommended that the users download and install WS_FTP LE and puTTy. WS_FTP

LE is a file transfer utility that facilitates the file transfer between a home PC and the

Department‘s UNIX server; puTTy is a Telnet program that facilitates remote access to our

UNIX server from a home PC. Both WS_FTP LE and puTTy are shareware that can be

downloaded from the Internet free of charge for educators and students. We first provide the

downloading and installation procedure of these two software packages. We then demonstrate in

detailed steps how a single-file and then a multiple-file program are entered, compiled and

executed in the Solaris UNIX environment.

Note: Although the default settings for PuTTy display white text on a black background,

in this document we use black text on a white background in order to save ink.

 3

II. Downloading and Installation of WS_FTP LE and puTTy

1. Downloading the putty software: you may first use the google search engine to look for a

putty download site by entering putty as the search word. Google displays the sites where

a free download is available. For example, the following is the first among many sites.

PuTTY: a free telnet/ssh client
Open source SSH client with remote file copying support. [Win32 (Intel and Alpha)]
www.chiark.greenend.org.uk/~sgtatham/putty/ - 5k - Cached - Similar pages

 Click on the hyperlink to go to the site and follow screen instructions to download the

putty.exe software. Note that you may want to first create a folder to store the putty

software or directly store it in the root directory of any drive of your choice. To install

putty, simply double click the putty.exe file you have just downloaded. If the installation

is successful, the putty icon shown below should appear on the desktop (if not, just copy

it to the desktop from the Windows program menu). Double clicking on the putty icon

initiates a remote login session to our Solaris UNIX server where one can gain full access

to services provided by the UNIX system as will be discussed later in this user manual.

 The putty icon:

2. Downloading the WS_FTP LE software: Note that only the LE version, which stands for

the ―limited edition‖ version of the software is available free of charge for educators and

students. Go to the google site and type in the search phrase WS_FTP LE, google displays

sites where the software can be downloaded. For example, the following is the one

possible site among many others.

WS_FTP LE - Reviews and free downloads at Download.com
WS_FTP LE - Transfer files over the Internet. - Review and free download at
Download.com.
www.download.com/3000-2160-1572132.html - 22k - Feb 2, 2006 - Cached - Similar pages

 Go to the site and then follow screen instructions to download the appropriate version of

the WS_FTP LE software that is compatible with your operating system (e.g., Windows

2000, or XP, etc.). Note that you may be required to prove your student status by

completing a questionnaire before the download can proceed. Again, the downloaded file

may be stored in a pre-created a folder or simply in the root directory of a drive of your

choice. To install WS_FTP LE, simply double click the downloaded file. If the

installation is successful, the system displays the WS_FTP icon on the desktop (if not,

just copy it from the Windows program menu) as shown below. To launch an FTP

session, simply double click on the icon. The detailed operations of FTP will be discussed

later in the manual.

 The WS_FTP LE icon:

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://64.233.179.104/search?q=cache:e21SJh5st8AJ:www.chiark.greenend.org.uk/~sgtatham/putty/+putty&hl=en&gl=us&ct=clnk&cd=1
http://www.google.com/search?hl=en&lr=&q=related:www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.download.com/3000-2160-1572132.html
http://72.14.207.104/search?q=cache:AiqEu_JxBrkJ:www.download.com/3000-2160-1572132.html+ws_ftp+le&hl=en&gl=us&ct=clnk&cd=3
http://www.google.com/search?hl=en&lr=&q=related:www.download.com/3000-2160-1572132.html

 4

III. Using PuTTy

 The following demonstration shows the steps needed to connect a remote computer such

as your home PC to the Solaris UNIX server maintained by the Department of Computer

Science, William Paterson University.

1. Launching the PuTTY telnet software: Click on the putty.exe icon (assuming the

putty.exe icon is displayed the desktop). The ―puTTY Configuration‖ dialog box appears:

Figure 1 – PuTTY Configuration Window

2. Entering the telnet connection information: Enter cs.wpunj.edu (the IP address of our

UNIX server in the Coach House) in the ―Host Name‖ box, then select SSH protocol as

shown. Click on the open command button, the ―cs.wpunj.edu – putty‖ login screen

appears as shown below, you are now connected to the UNIX server and it prompts you

to enter your username. Before you proceed to login, you may exercise the option of

configuring the putty session (e.g., change background and text color, etc.) by clicking

the PuTTY icon at the upper left corner and clicking on change settings. In the PuTTY

configuration window click on Colors.

Figure 2 – The UNIX login screen.

 5

3. Entering the UNIX login information of the user: Enter your username where bushg is

entered as shown in Figure – 3; your username is provided by your instructor; it usually

consists of your last name plus the first character of your first name. If your last name

contains 8 or more characters, then your username is the first 8 characters of your last

name. Since UNIX is case-sensitive, all letters in the username must be entered in

lower-case.

Figure – 3 UNIX login screen where username and password are entered.

You are then prompted to enter your password. As a new user, you will be assigned a

temporary password. As a protective measure, the password you entered is not displayed

on the screen. If the username and password is correctly entered, you should see the

UNIX screen similar to the one shown in Figure – 4, where bash-2.03$ is the prompt

from the popular Bourne again UNIX shell. At the prompt, you may enter any UNIX

command including those that allow you to enter, compile, link, execute, and print the

source code and output from your program.

Figure – 4 Successful login; UNIX displays prompt bash-2.03$

 6

4. Changing your password: As a new user, the first thing we recommend you to do is to

change your password. For security reasons, you may want to change your password

periodically. To change the password, simply type in the UNIX command passwd (Note

that passwd is actually a UNIX utility; for practical purpose, we make no distinction

between a shell built-in and utility command in this user manual; both will are referred to

as commands. Also note that the command name passwd is correctly spelled and there is

no ‗or‘ in passwd! at the UNIX shell prompt:

Figure -5 Use UNIX passwd command to change password.

Enter your current login password, press the Enter key, the system will then ask you to

enter the new password, which must differ from your current password by at least three

characters. Also, the password must contain at least six characters. To confirm your

change, the system prompts you to enter your new password again.

Important note: it is highly recommended that you memorize your password, preferably

write it down somewhere for future reference. In case you forget your password, it will

burden the lab administrators to reset your password. Just like you, the lab administrators

are students who have a lot of work to do!

In section IV, we provide a demo on how to enter, compile, link/edit, and execute a single

file C++ program using the easy to use pico text editor and the famous gnu C++ compiler

widely available in the public domain. We also demonstrate the use of a few frequently

used UNIX commands such as mkdir (makes or creates a directory or folder), cd

(changes the working directory or folder), pwd (displays or prints the working directory

or the directory you are currently in), and ls (lists the contents of a directory).

Since almost all real world programs are developed and compiled as separate files, we

provide in section V a demo which shows in detailed steps how a multi-file software

project is compiled, linked, and executed.

For the convenience of users, we provide in section VI a list of UNIX commands

frequently used by beginning level software developers.

 7

IV. A single-file C++ project

We demonstrate below in detailed steps how a single file program (helloWorld.cpp) is

entered into the system via the pico editor (a UNIX utility or command!) and then

compiled, linked, and executed using the famous gnu C++ compiler via the g++

command.

1. Launching the pico text editor: The main reason we choose the pico editor for entering

and editing C++ source code is its ease of use through a well-organized set of menus. It is

available in the public domain for free download. To launch the pico editor, simply type

pico at the UNIX prompt (bash-2.03$ on our system; it may look different on other

UNIX systems) and the name of the file (helloWorld.cpp in this demo. Note that unlike

Micorsoft Visual C++, no embedded space is allowed in a filename in UNIX.) and then

press the Enter key. The system displays the pico editing screen within the PuTTY

window, as shown in Figure – 6 below. Note that the file name helloWorld.cpp is

displayed in the title bar of the pico editing window. The pico text editor is a menu-

driven editor where the menu is displayed at the bottom of the screen. The ‗^‘ symbol in

the menu means the holding down of the Ctrl key, thus ^c means holding down the Ctrl

key and then pressing the letter c key.

 Figure 6 - The pico editing screen within the Putty window.

2. Entering the C++ source code for the helloWorld.cpp program: Type in the six lines for

the helloWorld.cpp program as shown in Figure – 7 below.

Figure 7 – The source code for the helloWorld.cpp program has been entered.

 8

3. Saving the helloWorld.cpp program to disk: The source code you just entered is

temporarily held in the buffer. To save it permanently on disk press ^x (Ctrl + x), the pico

editor asks you if you want to ―Save modified buffer …‖ as shown in Figure 8.

Figure 8 – Pico editor asks if you want to save the buffer (your program).

 Pressing ‗Y‘, pico responds by requesting confirmation that the file is going to be stored

under the filename helloWorld.cpp. Press the Enter key to confirm, pico returns control to

the UNIX shell with the shell prompt bash-2.03$ shown in Figure – 9 below.

Figure 9 - Back to the shell interface.

 At this juncture, you may be wondering where is the file stored and how you are going to

be able to find it so that you can compile and run it. It turns out that the helloWorld.cpp

file has been saved to your current working directory or folder, the folder that the UNIX

system assigned to you at the time you logged in. Similar to Microsoft Window‘s file

system, you may create many folders and store your program in any of these folders as

you wish. So before we show you how to compile and run the program, we introduce and

demonstrate a few frequently used file-related commands including pwd (displays the

current directory or folder), ls (lists the contents – file names and folder names – of a

directory), cd (changes directory), mkdir (makes or creates a new directory or folder

within the current folder), and mv (moves or changes the name of a file or folder). Other

useful UNIX commands related to your programming classes are discussed and

summarized in the Appendix.

4. Finding where you are with the pwd UNIX command: As discussed above, the pwd

command displays or prints the current working directory or folder. Enter pwd at the shell

prompt and press the Enter key, the system displays /home/students/bushg as shown in

Figure 10 below, where the leftmost slash / indicates the root directory of the file system;

 9

home is a folder or subdirectory in the root folder; students is a folder for student

accounts in home; and bushg is the login name of a student. It is also the default working

directory of that student. You will get a similar display with your login name as the name

of your default folder. Clearly you can see that in UNIX, files are stored in folders and

folders are organized in the tree-like or hierarchical order.

Figure 10 – The pwd command displays the current working directory or folder.

5. Listing contents of a folder with the ls command: The ls or list command lists all the files

and folders contained within the current working directory or folder. Continue from the

previous screen, enter ls at the shell prompt and press the Enter key, the UNIX system

displays all the files and folders that have been previously created in the bushg working

directory as shown in Figure 11 below. Notice the helloWorld.cpp we just entered is in

the list.

 Figure 11 – The ls command displays all the file and folder names in the current folder.

 There are many names in Figure - 11 and there is no way of telling which of these names

are associated with files or with folders. Modifying the ls command with a flag or switch

–l (a dash followed by a lower case letter ‗L‘ not numeral ‗1‘, where ‗l‘ stands for ‗long‘

or ‗long format‘), the system displays in Figure - 12 a whole lot more information

including whether the name is associated with a file or a folder (the first letter ‗d‘ in the

first column of display indicates a folder), the size of the files, the time when the file or

folder was created or last modified, etc. There are many other flags or switches that can

be used to modify the meaning of the ls command, which are discussed in the Appendix.

 Figure 12 – The ls –l displays more information about what are stored in a folder.

 10

6. Creating a new folder with the mkdir command: In a programming class such as CS240

or CS342, you are required to complete many programming projects and each of these

programming projects may consist of multiple files. It is therefore highly desirable to

store files belonging to a particular project in a separate folder where they can be easily

and quickly located. The mkdir command allows you to create new folders in your

current working directory, as illustrated below. Let‘s try to create a new folder named

programming_project#1 in the current working directory /home/students/bushg. Type

mkdir programming_project#1 at the shell prompt and press the Enter key as shown in

Figure 13.

Figure 13 – the mkdir command

 To see if the new folder has indeed been created, we continue in Figure 13 and enter ls at

the shell prompt, the system lists all the file and folder names as shown, and the new

folder programming_project#1 is indeed in the list. Opposite to mkdir is the rmdir

command, which removes an existing folder. The usage of rmdir is discussed in the

Appendix.

7. Moving between directories with the cd command: Without a ‗path‘ (beyond the scope of

this manual) that specifies the location of a folder, all new files are stored by UNIX in the

current working folder. So if you just create a new folder and want to store files in it, you

need to make the newly created folder your working folder, and it is easily done through

the use of the cd or change directory command, as illustrated in Figure 14 below.

Figure 14 – The cd command.

As shown in Figure 14, the pwd command displays /home/students/bushg as the current

working directory. We then type in cd programming_project#1, press the Enter key, and

then enter the pwd command again. The system now displays

 11

/home/students/bushg/programming_project#1 as the new working directory. Since we

have not yet created any new files in it or moved any existing files to it, the following ls

command results in nothing listed. To change the working directory from

programmingproject#1 to bushg, the ‗parent‘ folder that contains it, simply type at the

shell prompt the cd command, a space, and two dots or periods in a row then press the

Enter key, as illustrated in Figure 15. The two dots here mean the ‗parent‘ of the current

working directory.

Figure 15 – The cd .. command.

Note the above demonstrations allow you to move between a parent and a child directory.

Since there can be a tree of folders of many levels, you may need to go through the above

steps repeatedly in order to get to the desired folder. A quicker way to get to where you

want requires the user to specify the ‗path‘ that leads to the folder. A discussion of the

path can be found in any UNIX textbook.

8. Compiling and linking the C++ program using GNU C++ compiler: We are now ready to

compile and run the helloWorld.cpp program. Remember that the program file is stored

in bushg folder. To make sure that the file is there, just enter the ls command as

discussed before. The mv command is used to move the source file helloWorld.cpp to the

programming_project#1 folder. The cd command is used to change our working

directory to the new folder. We next enter g++ followed by the filename and then press

the Enter key, the GNU C++ compiler compiles and then links (only if there are no

compilation or syntax errors) the program with other modules referenced by the program

to produced an a.out file as shown in Figure 16. The a.out file, also known as the load

module, is an executable version of the helloWorld.cpp program.

Figure 16 – The g++ command that compiles and links the program.

 12

 Should there be any compilation or linkage errors, the system will display appropriate

error messages, which are absent from Figure 16, indicating the executable a.out load

module has been created in the working directory. Typing ls at the shell prompt confirms

that the a.out file is there, as shown in Figure 16.

9. Executing the a.out load module: To execute the a.out module, simply type a.out at the

shell prompt and press the Enter key. The single line output ―Hello World!‖ is displayed

on the screen as expected. This is shown in Figure 17 below.

Figure 17 – After executing a.out, the output ―Hello World!‖ is displayed.

10. Editing an existing file: What if you want to edit an existing program that you had

previously stored? For example, you may want to add another line in the helloWorl.cpp

file such that the program displays an additional line ―A Greeting From C++.‖ after the

―Hello World!‖ phrase. Simple, just type pico followed by the filename helloWorld.cpp

and press the Enter key. The pico text editor retrieves the stored file from disk and

displays it on the screen for editing. Enter the addition line as illustrated in Figure 18.

Compile and link the program again with the g++ command and execute the a.out load

module. The screen shows the new result of execution with two output line lines. All

these steps are displayed in Figures 18 and 19.

Figure 18 – the pico editing window where a new line has been added.

 13

Figure 19 – Output from the edited program.

11. Printing the C++ helloWorld.cpp source program: To print the source code is simple. Just

type the lp (line printing) followed by the name of the file, helloWorld.cpp. This

command will print the file on the default printer, Colossus in lab101a.

12. Printing the output result: As you‘ve noted in Figures 17 and 19, the outputs are part of

the screen display, mixed together with commands that you entered and the responses to

these commands from the UNIX system. One way to separate the outputs from the screen

display is to use the ―redirection‖ feature of the UNIX system: you may ask the UNIX to

send the program output to a separate text file with a name chosen by you. This is

achieved through the use of the output redirection operator ‗>‘ as illustrated in Figure 20.

Note that the output from the execution of a.out has been redirected (from the default

monitor) to an arbitrarily named output_result disk file in the current working directory.

Figure 20 – Output from the execution of a.out is directed output_result file.

 You may use UNIX command such as cat (the catenation command) or pico editor to

display the content of the output_result file. You can also use the lp command to print the

contents of the file.

 Notice: Never print an a.out file, since it contains binary data that will be unreadable by

humans and result in a great waste of paper and ink.

 The lab procedures presented thus far will enable you to run single-file programs found in

most of the projects in CS230, some projects in CS240 and other computer courses. Since

most real world programs consist of multiple files, we next discuss with a demo how a

multiple-file program gets compiled and executed.

13. Logging out: To log out of the UNIX, type either logout or exit at the shell prompt and

then press the Enter key. Holding down the Ctrl key and pressing D is another method.

 14

V. A Multiple-file C++ Project

1. Creating a folder to store all files belonging to the program: In the below demonstration,

we will use a time program to show how a multiple-file program is dealt with in the

Solaris UNIX environment. The time program displays time of the day in standard format.

The program is composed of three files: the time.h file, a user-defined header file that

defines the interface of the time class; the time.cpp file, which implements all the

functions defined in the time class; and the main.cpp file, the driver file that makes use of

the time class. As discussed in section IV, it is convenient to create a separate directory

used exclusively for the storage of all files of a program. Using the mkdir command, we

create a new folder and name it time in the working directory of bushg. Figure 21 shows

the time folder has been created within its parent bushg folder and through the use of cd

command, the time folder has been made the current working directory.

Figure 21 – Using the pwd command

2. Entering files: Using the pico editor, we separately entered the code for the three files

mentioned above. Figure 22 through 24 displays the code for the time.h, time.cpp, and

main.cpp, respectively. Note that you may open three pico windows (running three

separate pico processes) in the same manner that you opened your first by logging in the

UNIX multiple times. This way, you can work simultaneously with all three windows for

three different files, which is very convenient especially during a debugging session.

Figure 23 – Source code for the time.h file.

 15

Figure 23 – Source code for the time.cpp file.

 Figure 24 – Source code for the main.cpp file.

 16

In the time folder, we now have three files ready to be processed, as shown in Figure 25

below.

Figure 25 – Three files are in the time folder.

3. Compiling and linking files: To compile and link the three-file we have just entered,

simply type g++ time.cpp main.cpp and then press the Enter key. Notice that only files

with .cpp extension appear after the g++ command; the inclusion of the time.h header file

is implied through the use of the C++ pre-processing directive “#include “time” in both

the time.cpp and main.cpp files. Similar to a single file project, an executable load

module a.out will be created if there are no compiling and linking errors in the program.

Figure 26 shows the compilation and linking are successful and the a.out is produced in

the same time working directory or folder.

Figure 26 – Load module a.out is created after successful compilation.

4. Executing the a.out load module: Type a.out at the shell prompt and use the output

redirection operator > to direct the output of execution to an arbitrarily named file

time_program_output. Figure 27 shows the contents of the time_program_output file

that is produced.

Figure 27 – Output can be found in the time_program_output file.

 17

5. Printing the source and the output files: Follow identical steps to print the contents of

both the source and output files as described in steps 11 and 12 on page 13 for single file

programs.

6. Editing an existing multiple-file project: Since all files belonging to the project have been

placed in a folder, it is convenient to locate them and make necessary changes in a way

described in step 10 on page 13 for the simple-file project.

7. Compiling source files separately. When working with large programs with many

source files it is often advantageous to compile each source file separately. Using the rm

command we have removed the a.out and time_program_output files. Then we use the

(compile only) –c option of the g++ command to produce object modules from the two

source files. See Figure 28.

Figure 28—Separate compilation of source files.

 The next step is to use the g++ compiler to produce the a.out file from the object files.

Again we execute the a.out file to produce the program output as shown in Figure 29.

 Figure 29—Linking the object modules and executing.

 By now, we have covered the basic knowledge and procedures needed to successfully

compile, link, and execute a single-file as well as a multiple file C++ project in the

Solaris UNIX environment. In the process, we have introduced several frequently used

UNIX commands such as mkdir, rmdir, cd, pwd, ls, mv, lp, pico, and g++. In the

following Appendix, we categorize some of the frequently used UNIX commands by

their functions. We then provide a more detailed description and variations about the

usage of these commands.

 18

Appendix I: Frequently Used UNIX Commands

I. Frequently used commands grouped by their functions and sorted alphabetically.

(based on the book “UNIX in a Nutshell”, D. Gilly; O’Reilly & Associate, Inc.)

File Management Commands:

 cat Join files or display the contents of a file

 cd Change directory

 chmod Change access mode on files

 cp Copy files

 file Determine a file‘s type

 head Displays the first few lines of a file

 ln Create file aliases

 ls List files and directories

 mkdir Create or make a directory

 more Display contents of a file by screenful

 mv Move or rename a file or a directory

 pwd Print or display current working directory

 rm Remove files

 rmdir Remove directories

 tail Display the last few lines of a file

 wc Count lines, words, and characters in a file

Programming Commands:

 cc Compile and link a C program

 g++ Compile and link a C++ program with the gnu compiler

 lex Perform lexical analysis of a file

 make Manage versions of a large programming projects

 yacc Convert a file containing context-free grammar into tables for subsequent

 processing

 19

Text Editors or Text Editing Commands:

 cut Select column of a file for display

 pico A simple and easy to use menu-driven text editor

 sort Sort or merge files

 vi A command-driven full-screen text editor popular among professionals

Searching Commands:

 egrep Extended version of grep

 fgrep Search files for literal words

 find Search the system for file names

 grep Search files for text pattern

Miscellaneous Commands:

 cal displays the monthly calendar

 clear clear the screen

 date Display today‘s time and date

 finger Display information about individual users

 ftp To upload and download files

 kill Terminate a running command or a process

 lp Print the content of a file

 man Display information about a command

 passwd Change password

 ps Show processes

 talk Write to others online

 telnet Connect to another system

 who Display who are currently logged in

 20

II. Detailed Syntax and Usage of a Few Commands Frequently Used in CS Programming

Classes

 ls [options] [names]

If no names are given, all files and folders in the working directory are listed. If names are

provided: if the name is a folder name, all files in the named folder are displayed; if it is a file

name, the information about the file is displayed. The most useful options are listed below.

Note that an option is an upper or lower case letter preceded by a hyphen ‗-‗; if you specify

more than one option, then only a single hyphen preceding the first option is needed.

Options

-a List all files, including the hidden files (those preceeded by a ‗.‘ when displayed.)

-F List all file and folder names and append a ‗/‘ to folder names, ‗*‘ to executable

file names (such as a.out), and ‗@‘ to symbolic links.

-i List inode of each file

-l Long format listing, including file access permissions, ownership, size, creation or

modification time, etc.

-r List files in reverse order by name and by date

-t List files by modification time, newest first.

 mv [options] source target

Move files and directories around on the system or to rename them, as illustrated below:

Source target Result

File name Rename file as name

File Existing file Overwrite existing file with source file

Directory name Rename directory as name

Directory Existing directory Move directory as a sub-directory of existing one

One or more file Existing directory Move all files to existing directory

Options

-i Inquires; prompt for a y(yes) response before overwriting an existing target.

 rm [options] files

Delete one or more files in a directory. To remove a file, one must have write permission in

the directory that contains the file, but one needs not have permission on the file itself.

Options

-r If file is a directory or folder, remove the entire directory and all its contents,

including subdirectories! So use it with care.

 21

 chmod [options] mode files

Changes the access mode of one or more files. Only the owner of a file or a privileged user

may change its mode. Create mode by concatenating the characters from who, opcode, and

permission. Who is optional (if omitted, default is a); choose only one opcode.

Who

u User

g Group

o Other

a All (default)

Opcode

+ Add permission

- Remove permission

= Assign permission (and remove permission of the unspecified fileds)

Permission

r Read

w Write

x Execute

Examples:

Add execute-by-user permission to file: chmod u + x file

 make [options] [target]

Update one or more targets according to dependency instructions in a description file in the

current directory. By default, this file is called makefile or Makefile.

Options

-q Query; return 0 if file is up-to-date; non-zero otherwise.

 22

Appendix II

Useful UNIX Shell Command-Line Key Strokes

The following key strokes are to be used in the command-line operations only. The same

key strokes in different environment, e.g., in the pico or vi editor may invoke totally

different responses!

 Ctrl + D: logging out of a UNIX session; equivalent to typing logout or exit at the shell

prompt and then pressing the Enter key.

 Ctrl + H: Deleting a character to the left of the cursor in the command line after the

shell prompt; same as pressing the Backspace key.

 Ctrl + R: Redrawing the current command line.

 Ctrl + U: Deleting or killing the entire command line.

 Ctrl + W: Deleting a word to the left of the cursor in the command line.

 Ctrl + C: Terminating the execution of a shell command. (For example, when you typed

man ls at the shell prompt, the UNIX displays in lengthy detail about the

usage of the ls command. You may press Ctrl+C to terminate the screen

display as soon as you‘ve obtained the needed information about the ls

command.)

 The arrow keys:

o Top: Scrolling backward through previously entered commands at the shell

prompt in a sequential manner. All previously entered commands are

stored in the buffer.

o Down: Scrolling forward through commands stored in the buffer and stopping

at the most-recently-entered command.

o Left: Move the cursor to the character on its left in the command line.

o Right: Move the cursor to the character on its right in the command line.

 23

Appendix III: Uisng WS_FTP LE

Launching WS_FTP LE: Double click the WS_FTP LE icon on the desktop (copy it from

the program menu to the desktop if the icon is not there), the system displays the Session

Properties dialog box in Figure - A1 below:

 Enter information as shown except you must enter your UNIX login name in the User ID

box and your UNIX login password in the Password box. Click the OK button, the

system displays the WS_FTP LE cs.wpunj.edu window in Figure - A2 below.

The WS_FTP LE cs.wpunj.edu window consists of 2 two panes. The pane on the left

displays the disk drives, directories, and files of your Local System (your home computer,

for example); the pane on the right shows the directories and files of the Remote System

 24

(our UNIX server in the Coach House). You may select any file or files in any folder on

any drive of your local PC and transfer them (uploading) to any of your folders on the

UNIX server. You may also transfer any of your files from the UNIX server to your local

PC. Once the files are selected, the transfer is effected by clicking the arrow icon in

between the two panes.

In addition to file transfer, the WS_FTP LE is capable of performing many other

functions for you by clicking on appropriate buttons. These buttons, including chdir,

mkdir, exec, rename, delete, and refresh are grouped into a panel on the right side of

each pane of the WS_FTP LE cs.wpunj.edu window. The use of these buttons is rather

intuitive, so no attempt is made here to discuss it further.

